
The authors are
official position
Technical prese
Citation of this 
Presentation. A
reproduce a tec

(2950 Niles Roa

 

 

                 

Huihui Zhan

 Dep

Yubin Lan 

USD

Charles Suh

 USD

Chenghai Y

 USD

Ronald Lac

 Dep

Abstract. T
cultivated h
study inves
discriminati
multispectra
over three l
discriminati
sensor data
discriminati
sensors we
types with f
enhance ou
habitats.  

Keywords.

e solely responsi
 of ASABE, and

entations are not
work should st

ASABE Section M
chnical presentat

ad, St. Joseph, M

            
Fusio

grou
ng 

artment of Bio

DA ARS Colle

h, John West

DA ARS, Colle

Yang 

DA-ARS, Wes

ey 

artment of Bio

S

Savann

Timely detec
habitats is cr
stigated the u
ion of differe
al imagery a
large agricul
ion accuracy
a fusion tech
ion. The indi
ere 90% and
fused data w
ur ability to d

. Airborne m

ble for the conte
d its printing an
t subject to the fo
tate that it is fro
Meeting Paper N
tion, please conta

MI 49085-9659 U

on of rem

und-based

ological and A

ege Station, T

tbrook, W. C

ege Station, T

slaco, TX 

ological and A

W
2010

ponsored b
44th 

ah Internati

ction and rem
ritical for com
use of aerial
ent crop type
and ground-b
ltural fields in
y of aerial- a
hnique was a
ividual class

d 93.3%, resp
was 100%.  T
detect volunt

multispectral 

ent of this technic
nd distribution d
ormal peer review
om an ASABE S
o. xxxx. St. Jose
act ASABE at rut

USA). 

motely sen

d sensor

Agricultural E

TX  yubin.lan@

Clint Hoffman

TX 

Agricultural E

Written for 
0 ASABE/NA
by ASABE T

Annual Co
ional Trade

Dece

mediation of 
mpleting boll 
l imagery an
es and timely
based spect
n Burleson C

and ground-b
applied on b
sification acc
pectively.  In
These result
teer cotton p

imagery, rem

cal presentation. 
does not constitu
w process, there
Section Meeting
eph, Mich.: ASAB
tter@asabe.org 

 
 
An A

Pap

nsed data

rs for cott

Engineering, T

@ars.usda.go

nn 

Engineering, T

presentatio
AAA Techni
Technical C
nvention & 
 & Convent
mber 6, 201

f volunteer co
weevil erad

nd ground-ba
y detection o
tral reflectan
Co., Texas d
based data w
oth datasets

curacy of dat
n comparison
ts suggest d
plants occurr

mote sensing

The technical pr
ute an endorsem

efore, they are no
g paper. EXAMP
BE. For informat
or 269-429-0300

ASABE Sec

per Number:

a from ai

ton regro

Texas A&M U

ov. 

Texas A&M U

on at the 
ical Session

Committee P
& Exposition
tion Center,
10 

otton plants 
dication in Ce
ased remote
of cotton pla
ce data wer

during the 20
were examin
s in order to 
ta taken with
n, the accur

data fusion te
ring in cultiva

g, data fusio

resentation does
ment of views w
ot to be presente
PLE: Author's La
tion about securi
0  

ction Meetin

r: AA10-009 

rborne an

owth stud

niversity 

niversity 

n 
PM-23/6/2 
n 
, Savannah

in both culti
entral and S

ely sensed d
nts over larg

re acquired a
010 growing
ned individua
improve the

h the aerial- 
racy of discri
echniques co

vated and no

on

s not necessarily
which may be e

ed as refereed pu
ast Name, Initia
ing permission to

ng Presenta

nd 

dy 

, GA 

ivated and n
South Texas.
data for the 
ge areas. Air
at the same 
g season. Th
ally; then a m
e accuracy o
and ground-
iminating cro
ould greatly

on-cultivated 

y reflect the 
expressed. 
ublications. 
ls. Title of 
o reprint or 

ation 

non-
.  The 

rborne 
time 

he 
multi-
of 
-based 
op 

d



 

2 

Introduction 
 

 Remote sensing technologies have been widely used for modern agricultural 

management. Various types of data have been provided for detecting crop conditions or soil 

properties by optical sensors or instruments from ground-based, airborne and spaceborne 

platforms. Despite the availabilities of these sensors, few studies have examined multisensor 

fusion techniques for their data. Multisensor data fusion techniques combine data from multiple 

sensors or sources to perform interference that may not be possible or may not be good from a 

single sensor or source itself (Hall and Llinas, 1997; Hall and McMullen, 2004). In this study, the 

potential of multisensor fusion of ground-based and airborne imagery data was investigated for 

discriminating crop types. The method may be extended to other types of data. 

      Even when cotton plants (Gossypium hirsutum L.) stalks are destroyed after harvest, 

regrowth from stalks or growth of volunteer plants from unharvested seed can occur under 

favorable environmental conditions. Such plants allow boll weevils (Anthonomus grandis 

Boheman), to reproduce or acquire the necessary resources to overwinter. Given the limited 

resources and funds, there is an urgent need to develop or identify technologies that can be 

used to efficiently detect regrowth and volunteer plants in both cultivated and uncultivated 

habitats.  One potential method may involve remote sensing with multispectral and 

hyperspectral sensors.   

During the past decade, hyperspectral and multispectral sensors have shown 

considerable promise as tools for efficiently monitoring plants in localized areas of fields. 

Spectral reflectance properties based on the absorption of light at a specific wavelength are 

associated with specific plant characteristics. For healthy crops, spectral reflectance in the 

visible wavelengths (400-700 nm) is low because of the high absorption of light energy by 

chlorophyll. In contrast, reflectance in the near infrared (NIR) wavelengths (700-1300 nm) is 
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high because of the multiple scattering of light by different leaf tissues (Taiz and Zeiger, 2006).  

Reflectance in the green region is also higher than that in the blue and red regions of the 

spectrum. Stress or damage to crops can cause a decrease in chlorophyll content and change 

internal leaf structure (Curran, 1989). As a result, the reflectance in the visible region will 

decrease. Several studies have used hyperspectral measurements in support of crop 

management, such as crop type identification, plant nutrition deficiency assessment, crop stress 

or damage, yield estimation and growth status evaluation (Thenkabail, 2002; Zhao et al., 2005 a 

and b; Plant et al., 2000; Muhammed, 2005; and Koger et al., 2003). Thenkabail et al. (2000) 

used narrow-band spectral data between 350 and 1050 nm to determine appropriate bands for 

characterizing biophysical variables of various crops, including corn, soybean and cotton. Gray 

et al. (2009) analyzed hyperspectral reflectance data with a variety of methods for differentiating 

soybean, soil, and six weed species commonly found in Mississippi agricultural fields.  

Nowadays, airborne remote sensing technologies have made tremendous improvements 

over the years and are now being used in precision agricultural applications (Lan et al., 2007a 

and b; Huang et al., 2008; Huang et al., 2009; Lan et al., 2009a). Multispectral cameras typically 

capture imagery that can be related to relative radiance in the visible and NIR regions. 

Multispectral data comprise a set of optimally chosen spectral wavebands that are not 

contiguous.  Airborne multispectral techniques are much less expensive and less data-intensive 

than hyerspectral imaging systems and can rapidly provide continuously remotely sensed data 

over a large field or region. Yang et al. (2006) examined airborne color-infrared digital imagery 

for assessing the effectiveness of different herbicide treatments for cotton regrowth control. 

Goel et al. (2003) used airborne hyperspectral data to estimate crop biophysical parameters 

within corn plots which were treated with different combinations of weed control and N rates. 

The incorporation of spectral reflectance data from additional wavelength regions resulted in a 

better regression model. As a result, more than 90% of the variation could be explained for 
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many crop biophysical variables. Although hyperspectral imagery can provide hundreds of 

wavebands, it is expensive and acquires significant efforts to properly process an image. 

Consequently, the use of hyperspectral imagery as management- decision aide may not be a 

viable tool for all farmers. Furthermore, both satellite and aerial imagery can be compromised by 

cloud cover. 

Although optical sensors and instruments fitted for different platforms have been 

demonstrated as promising tools for crop spectral reflectance measurements, only a few studies 

incorporated multisensor data fusion for assessment of crop conditions. Bravo et al. (2004) 

combined hyperspectral reflectance data between 450 nm and 900 nm and fluorescence 

imaging to detect and recognize foliar disease in wheat. Kaleita (2003) developed a 

methodology for mapping surface soil moisture content across an agriculture field from optical 

remote sensing data and limited ground sampling data. Further efforts are needed to apply 

multisensor fusion techniques to fuse data from different sensors and improve the performance 

of sensing systems. 

Airborne multispectral imaging system can rapidly provide spectral information over a 

large field at a low spectral resolution. Ground-based hand-held remote sensing instruments are 

not strongly influenced by environmental conditions but are labor- and time- consuming. 

Considering the advantages of both airborne multispectral imagery and ground-based remote 

sensing data, the objectives of this work were to: investigate spectral reflectance characteristic 

of regrowth or volunteer cotton compared to other crops; examine the variability of spectral 

reflectance within each field; and distinguish different crop types using ground-based 

hyperspectral data, airborne multispectral imagery, and the fused data from the ground-based 

and airborne spectral measurements. 
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Materials and Methods 

Study Area 

 Ground remotely-sensed data were collected from about twenty agricultural fields in 

Burleson Co., TX on multiple dates throughout the 2010 growing season.  A total of ten 

sampling locations were randomly marked within each field with color flags. Fields were 

observed for volunteer cotton plants. If any volunteer cotton plant was located, spectral 

measurement would also be taken from the volunteer cotton plant. Airborne multispectral 

imagery of the study area was also acquired at the same time on two sampling dates (June 17 

and August 11).  However, images taken in June were compromised by cloud cover. Thus, only 

the imagery taken in August was used for data fusion analysis. The imagery covered three 

fields: cotton (30o34’2.52”N, 96o28’41.77”W); corn (30o33’34.27”N, 96o27’51.7”W); and soybean 

(30o33’7.53”N, 96o27’14.27”W).  

Data Collection 

Airborne Multispectral Image 

 

The airborne imaging system described in Yang (2010) was used to capture aerial 

images in this study. The system consists of four high-resolution charge-coupled device (CCD) 

digital cameras and a ruggedized PC equipped with a frame grabber and image acquisition 

software. The cameras are sensitive in the 400 to 1000 nm spectral range and provide 2048 × 

2048 active pixels with 12-bit data depth. The four cameras are equipped with blue (430-470 

nm), green (530-570 nm), red (630-670 nm), and near-infrared (810-850 nm) band pass 

interference filters, respectively. 

The multispectral images were acquired under clear sky condition and during solar noon 

time on August 11, 2010 when crops were in their late reproductive stage of development. Each 

four-band image was georeferenced to the Universal Transverse Mercator (UTM), World 

Geodetic Survey (WGS 84), Zone 14, coordinate system based on ground control points around 
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the field located with a GPS unit. The pixel size of all images was resampled to 1 m, and the 

total root mean square error (RMSE) was less than 1 m. All the data processing and analyses 

were performed in the Environment for Visualizing Images (ENVI) software package (Version 

4.5, ITT Visual Information Solution, www.ittvis.com). Since the objective of this study was to 

evaluate the relationship between imagery data and ground-based reflectance data, the raw 

digital numbers of the image were converted into reflectance values. For radiometric calibration 

of the imagery, two 8 m x 8 m tarpaulins with different reflectance characteristics were placed 

near the fields during image acquisition. The actual reflectance values from the tarpaulins were 

measured using the FieldSpec spectroradiometer. The original multispectral images were 

converted to reflectance images based on the digital values of pixels of the tarpaulins and the 

reflectance data from the spectroradiometer. 

 
Ground-based Data Collection 

 
Canopy surface reflectance spectra were measured using with an ASD FieldSpec® 

Handheld spectroradiometer (VNIR; 325-1075 nm, 512-channel, and 1.6 nm sampling interval; 

Analytical Spectral Devices, Inc., Boulder, CO). The instrument optimization and white reference 

measurements were performed prior to taking measurements (Castro-Esau et al., 2006). 

Reflectance was calculated as the ratio between the reflected radiation from the canopy and the 

incident energy on the white reference panel (BaSO4). The spectroradiometer was adjusted to 

10 scans per dark current and the integration time was set at 217 ms. The coordinates of 

sampling locations were recorded with an eXplorist XL® GPS unit (Magellan, Santa Clara, CA) 

and were used to match aerial and ground pixel data. The spectroradiometer was held at the 

same height and with a nadir-looking view at the top of plant canopies. Ten readings were taken 

and averaged to one value to represent the mean reflectance spectrum of the sampling area. 

The white reference was taken at the first and sixth locations or whenever the light condition 

changed. To determine whether the hyperspectral sensor had better performance than airborne 
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multispectral sensor for crop variation detection, the reflectance data from the 

spectroradiometer was simulated to broadband data according to the bandwidth of the 

multispectral imaging sensor. The discrete 1.6 nm narrow band reflectance data measured by 

the spectroradiometer were averaged into the airborne multispectral imaging sensor’s four 

broad spectral bands (430 to 470 nm, 530 to 570 nm, 630 to 670 nm, and 810 to 850 nm) to 

obtain the simulated broad band reflectance data at ground level. Due to noise in the 325 to 399 

nm region, only the reflectance values between 400 nm to 1075 nm were used. 

 
Data Association 

 

A shape file (vector data storage format) was created using the spatial coordinates of ten 

ground sampling locations within each field. The regions of interest were visually selected for 

cotton, corn, and soybean and the subset images of the regions of interest were exported into 

ArcGIS 9.3.1 (Esri, Redlands, CA, USA). The ground sampling points were overlaid on the 

image. The four bands values of the image pixels which were geo-collocated with ground 

sampling points were extracted for further analysis.  

Data Analysis 

Principal Component Analysis 

 
Principal component analysis (PCA) is a multivariate technique used as a tool for 

reducing high dimensional data (512-channel spectroradiometer data in this study). The 

information content contained in original variables is projected onto a smaller number of 

principal components (PCs) which are linear combinations of those variables. The process of 

PCA returns scores which are the estimated values for each principal component and PCA 

loadings. The PCA score plot can present the clustering of the data and the PCA loading plot 

can be used to investigate the contribution of each variable. PCA was performed using proc 

PRINCOMP in SAS (SAS Institute, Cary, NC) to create a new principal component for each 
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wavelength variable in the original data. Two principal components, PC1 and PC2 were used for 

classification. 

 
Data Fusion 

 

Discriminant analyses were applied on several datasets: 1) derived reflectance values 

from four bands multispectral imagery; 2) simulated broad band reflectance values from the 

Fieldspec spectroradiometer; 3) principal components derived from reflectance values taken 

with Fieldspec spectroradiometer at 1.6 nm sampling interval; 4) combined dataset 1 and 2; 5) 

principal components derived from dataset 4; and 6) principal components derived from the 

combination of datasets 1 and Fieldspec reflectance data at 1.6 nm bandwidth. 

The DISCRIM procedure in SAS was applied on aforementioned datasets for 

classification. The parameters being used to develop discriminant function were pooled 

covariance matrix and prior probability of the groups. The DISCRIM procedure divided the data 

into two subsets. One subset was used to develop a calibration model and the other to validate 

the model. “One data out” method was used for cross-validation in this procedure. The output 

matrix provided the misclassification rate of calibration and cross-validation.    

 
Results and Discussion 

Reflectance Spectra 

 
Not all the ground measurement results were reported in this manuscript. Only 

reflectance spectra of a volunteer cotton plant located in a soybean field and reflectance spectra 

of the three fields surveyed by airborne imagery. 

 
Volunteer Cotton in Soybean Field 
  

A volunteer cotton plant (grown from unharvested seed) was found in a soybean field. A 

total of five reflectance readings were taken from the volunteer cotton plant and the soybean 
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plant beside it. After visually inspecting the volunteer cotton plant, both plants were found about 

to be the same height, and the color of the cotton plant was much darker than the soybean 

plant. The mean reflectance spectra of these two plants are given in Figure 1. Compared to the 

reflectance spectra of the soybean plant, the volunteer cotton plant had a slightly higher 

reflectance in the visible region, but less reflectance in the NIR region.  

 

 

Figure 1. Reflectance spectra of volunteer cotton plant in soybean field taken by Fieldspec 

spectroradiometer. 

Comparison of Cotton, Corn and Soybean Spectra 

 

The ten reflectance spectra of cotton, corn and soybean plants were plotted in Figure 2. 

The spectrum for cotton plants had the shape of a typical spectral curve for healthy plants, 

which means that canopies absorbed most blue and red light, reflected some green light (10-

20%) and most near infrared light (60-80%). The reflectance spectra showed differences, 

especially in the NIR region, among ten sampling locations within each field. Therefore, even 

from one crop type within a field, the reflectance spectra would be different.  
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Figure 2. Reflectance spectra of cotton, corn and soybean plants were measured with a 

Fieldspec spectroradiometer at the ten sampling locations. 
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 Figure 3 gives the average reflectance spectra of cotton, corn, and soybean plants from 

three fields. It is obvious that these spectra differed in both the visible and NIR regions. In the 

late growth stage, the corn and soybean plants were senescent, and tended to reflect more 

visible light and less NIR light. 

 

Figure 3. The mean reflectance spectra of three crop types taken with a FieldSpec 

spectroradiometer 

Data Fusion  

 

Principal component analysis was undertaken on three datasets to reduce the 

dimensionality of the datasets. Table 1 shows that the first two principal components explained 

about 95% of the variation for the datasets. Only the first two principal components, PC1 and 

PC2, were used for discrimination analysis.  
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Table1. Summary of principal component analysis  

 

Data Source No. of PCs Explained Variation (%) 

Fieldspec (1.6nm) PC1 

PC1, PC2 

70.76 

95.1 

1.6nm Fieldspec + Image PC1 

PC1, PC2 

70.75 

95.1 

Simulated Fieldspec + Image PC1 

PC1, PC2 

77.35 

94.2 

 

 

 
The classification results are reported in Table 2. The classification performance was 

evaluated by the misclassification rate in both the calibration and cross-validation steps in the 

DISCRIM procedure. Using the reflectance values derived from imagery alone, the classification 

accuracy was 90% in both the calibration and cross-validation steps.  With simulated Fieldspec 

broad band reflectance values, the classification accuracy increased in the calibration (93.3%) 

but decreased in the cross-validation step (86.7%). When using a combination of these two 

datasets, different crop types were distinguished from each other with 100% accuracy and only 

3.3% misclassification rate in the cross-validation step. When using the principal components 

from the original datasets by principal component analysis, the classification accuracy with 

fused data was higher than the reflectance values derived from the imagery and the reflectance 

values taken by Fieldspec alone.  
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Table2. Summary of misclassification matrices obtained from the DISCRIM procedure. 

 

Data Source Dataset Calibration (%) 

 

Cross-Validation (%) 

Image Four bands 10 

 

10 

FieldSpec (simulated 
broadband) 

Four bands 6.7 

 

13.33 

 

FieldSpec (simulated 
broadband)+Image 

 0 

 

3.33 

PCA (Fieldspec) PC1 

PC1, PC2 

30 

3.3 

30 

6.67 

PCA (1.6nm 
Fieldspec + image) 

PC1 

PC1, PC2 

30 

3.33 

30 

6.67 

PCA (simulated 
Fieldspec + image) 

PC1 

PC1, PC2 

6.67 

3.33 

10 

3.33 

 

 

Summary and Conclusions 
  

In this study, both ground-based handheld spectroradiometer data and airborne imagery 

were used for a volunteer cotton study. The reflectance spectrum of the volunteer cotton plants 

was found to differ from that spectrum of a normal soybean plant. The variability of the 

reflectance spectra of cotton, corn and soybean plants from ten sampling locations within each 

farm were examined using a handheld spectroradiometer. Even for the same crop type in the 

same field, the reflectance spectra differed, especially in the near infrared region of the 

spectrum. Discriminant analyses were performed on six datasets which were taken based on 

airborne multispectral imagery, ground-based spectroradiometer data, and fused data from the 

airborne and ground-based spectral measurements. The fused dataset performed better in 

discriminating crop types than did the datasets using a single sensor alone. The overall results 
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indicated the potential of multisensor data fusion of remotely sensed data from different sensors 

as an effective tool for detecting cotton regrowth and volunteer plants. The method may be 

extended to the fusion of other types of data, such as imagery data, ultrasonic crop height 

sensor data, and soil moisture sensor data.  
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